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A new tensorial approach introducing unequal elastic constants in a two-dimensional lattice
model is applied to simulate the influence of disclination interaction on the structures of half-
wedge disclinations, for the understanding of the variation of apparent elastic anisotropy ea
measured from different disclinations in a texture (see preceding paper, part I [1]). The
apparently random variation of ea implies that disclination interaction has a strong effect
on the structure of disclinations; as elastic anisotropy increases, its impact becomes
overpowering. Nevertheless the disclination interaction still acts in the same way as in the
case of equal elastic constants. Analysis of the free energy of disclination pairs shows that the
structures of both z1/2 and 21/2 disclinations are changed under the influence of a
neighbouring disclination, but in different ways. For z1/2 disclination, the splay and bend
distortions vary with the relative orientation of its 21/2 neighbour. Meanwhile, for 21/2
disclination, the bend and splay distortions are remarkably insensitive to the relative
orientation of its z1/2 disclination neighbour.

1. Introduction

In the preceding paper part I [1], the elastic

anisotropy e of a copolyester (Cl-6) was supposed to

be obtained by measuring the distortions around the

z1/2 wedge disclinations as revealed by spontaneous

band texture. However, in a given specimen, a full

range of values of ea was obtained from the different

z1/2 disclinations. This unexpected result reminds us

that the principle on which the measurement is based

assumes an ideal single disclination in the absence

of any interaction with neighbouring disclinations. In

reality, disclination interaction may have a significant

influence on the disclination structure. The difference

of the apparent elastic anisotropy in one specimen

raises the basic issue of defect interaction and its

impact on the structure of defects.

It is certain that disclinations with opposite sign

attract and then annihilate each other. This leads to a

decrease in the number of disclinations and a coarsen-

ing of the texture in the nematic state of both low

molecular mass liquid crystals and liquid crystal

polymers (LCPs). However, the way by which disclina-

tions interact, and how this interaction affects the

structure of individual disclinations, is little known.

Ranganath [2] first considered the relative orientation

of (z1/2, 21/2) pairs. He proposed two types of

extreme director patterns of (z1/2, 21/2) pairs, with

the central region rich in bend for one situation and

rich in splay for the other. In his analysis, only one

member of the (z1/2, 21/2) pairs was energetically

favoured, depending on the sign of elastic anisotropy e.

Unfortunately, few data of disclination interaction and

the elastic anisotropy of materials have been presented

so far, due to the limitation of current experimental

techniques.

Numerical simulation provides a possible way to

solve the problems beyond the experimental techniques.

Much simulation work has been done to probe the

microstructure and the evolution of texture in liquid

crystals by using Monte Carlo algorithms to minimize

the Frank elastic energy. Most of these methods have

relied on the assumption of equal elastic constants.

Some efforts have been made to tackle the problem in

the case of different elastic constants [3–5]. Currently, a

tensor model [6] has been developed to deal with the

three Frank constants in nematics. A relaxation

algorithm is implemented to solve the Ericksen–Leslie

equation. The elastic torque is expressed by a tensorial

form in order to treat the nematic symmetry. This

deterministic model has been used to simulate the
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microstructure of LCPs with and without an external

field [6–8].

In this paper, the tensor model is applied in order to

interpret the variation of the apparent elastic aniso-

tropy in experimental measurements, and to find the

effects of defect interaction and elastic anisotropy on

the microstructure of these defects. The disclinations in

the cases of unequal elastic anisotropy are quenched

during the evolution from a random isotropic state with

periodic boundary conditions. The apparent elastic

anisotropy ea is measured from a few selected z1/2

disclinations. The energies of typical patterns of disclin-

ation pairs are analysed, and the impact of disclination

interaction on the structures of wedge disclinations is

discussed.

2. Tensor model
The details of the tensor model were described in [6].

In this work, a two-dimensional adaptation of the

model is applied as the experimental data are from thin

film specimens in which disclinations lie normal to the

plane. In 2D, the Frank elastic free energy density in

the vectorial form is:

f~
1

2
k11 +:nð Þ2zk33 n| +|nð Þð Þ: n| +|nð Þð Þ
h i

ð1Þ

which can be written in the equivalent tensorial form:

f~
1

2
k11 n2+1n1n1{n1+2n1n1ð Þ2

h

z n2+1n1n2{n1+2n1n2ð Þ2�

z
1

2
k33 n1+1n1n1zn2+2n1n1ð Þ2

h

z n1+1n1n2zn2+2n1n2ð Þ2� ð2Þ

where nen~1 and k11 and k33 are the splay and the

bend elastic constants, respectively. With Greek sub-

scripts referring to the Cartesian components, +a~h/hxa,

(x1, x2)~(x, y) in two dimensions. Equation (2) is used

directly to calculate the elastic free energy of the system

because nematic symmetry is conserved automatica-

lly. In the absence of an external field, the equation

describing the relaxation of the director field in

nematics is:

Ln
Lt

~
1

c1
n|hð Þ|n ð3Þ

where h is the ‘texture field’ ascribable to the spatial

inhomogeneity of the directors, n6h is the torque per

unit volume due to curvature elasticity and c1 is the

rotational viscous coefficient. In the equilibrium state,

the director n must orient itself parallel to the ‘texture

field’, h can be expressed as [6]:

h1~2n1f11z2n2f12 ð4Þ

h2~2n1f12{2n2f11 ð5Þ
where

f11~k11 n2n2+11n1n1zn1n1+22n1n1{2n1n2+12n1n1ð Þ

zk33 n1n1+11n1n1zn2n2+22n1n1z2n1n2+12n1n1ð Þ

z
1

2
k33{k11ð Þ½ +2n1n2z+1n1n1ð Þ2

{ +1n1n2{+2n1n1ð Þ2� ð6Þ

f12~k11 n2n2+11n1n2zn1n1+22n1n2{2n1n2+12n1n2ð Þ

zk33 n1n1+11n1n2zn2n2+22n1n2z2n1n2+12n1n2ð Þ

z k33{k11ð Þ +2n1n2z+1n1n1ð Þ +1n1n2{+2n1n1ð Þ ð7Þ

where +ab~h2/hxahxb; a, b~1, 2.

The tensor lattice model is capable of distinguishing

the splay, twist and bend distortions in the three-

dimensional director field. This has been tested by

simulating the Fréedericksz transitions [6]. Periodic

boundary conditions are used, which are correlated

with the conditions during the simulation of the bulk.

3. Measurement of elastic anisotropy

Due to the great variation of the apparent elastic

anisotropy in experimental measurements [1], the method

for determining the intrinsic elastic anisotropy should

be viewed with circumspection. The more important

implication would be that the variation of ea obtained

from different z1/2 disclinations in one specimen pro-

bably just reflects the complicated interaction among

neighbouring disclinations. Obviously, the elastic ani-

sotropy is not the only factor which determines the

distortions surrounding z1/2 disclination. The discli-

nation interaction itself may also play a role in the

configurations of disclinations. From an experimental

point of view, the interaction of disclinations is a

difficult issue, on which numerical simulations are here

brought to bear.

3.1. Elastic Anisotropy measured from isolated

disclinations

First, only the director field of a single disclination in

isolation is considered. This is a helpful comparison

between ideally isolated disclinations and disclinations

in polydomains in the experiments and simulations. The

theoretical structures of z1/2 disclinations in lattices

as a function of elastic anisotropy are visualized by

equation (4) in [1]. Since this equation can be used only

for small values of e (theoretically, |e|v0.67 [9]),

W. Song et al.776
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figures 1 (a–e) show the configurations of five z1/2

disclinations with e~20.5, 20.3, 0, 0.3 and 0.5.

The origin of the co-ordinate system is defined at the

disclination core, as shown in figure 1 (c). Hence, in the

same way as in the previous work [1], the w(h) data of

the director field at a radius r can be determined.

Figure 1 ( f ) gives five examples of w(h) data measured

from the disclinations in figures 1 (a–e) at radius r~6

(the number of cells) (the unit is the width of a cell).

The number of data points increases with the radius.

The measured elastic anisotropy, em, at the different

radii is determined by a least-squares fit to equation (3)

in [1]. The first derivative hw/hh and the second

derivative h2w/hh2 can be approximated using central

finite difference from the w(h) data.
Figure 1 (g) shows the measurement results in the

cases of |e|~0, 0.3 and 0.5. As expected, the measured

value of em for each single z1/2 disclination matches

the predefined one. Therefore, provided the disclination

is in complete isolation, this numerical method can

appropriately measure elastic anisotropy. The values of

em are consistent as the radius r increases, apart from

those near the cores. The deviation of em near the cores

may be due to the discrete nature of the lattice. The

number of available w(h) data may not be enough to

describe the distortions near the cores precisely, similar

to those measured from the discretized director fields

revealed by band texture. This issue has been discussed

in detail in part I [1].

3.2. Apparent elastic anisotropy measured from the

simulated disclinations

Microstructure formation in liquid crystalline mate-

rials is driven by the need to minimize the curvature

distortions. The microstructure observed in LCPs is

often far from equilibrium and unlikely to be in a

minimum energy state. Hence, a model which follows

the evolution of microstructure and the director field

in a non-equilibrium state is appropriate for interpret-

ing the microstructure of the materials. The defects

measured in the following series of simulations are

obtained by terminating simulations before all defects

have been annihilated. The simulation is performed on

a 1006100 lattice starting from an isotropic initial

state with periodic boundary conditions.

3.2.1. Equal elastic constants, k11~k33

Figure 2 (a) is a snapshot of the director field with

equal elastic constants, with four z1/2 disclinations

highlighted. Hereafter, the core of the disclinations in

the director fields is marked as a small filled box where

the elastic free energy is greater than a given threshold.

The disclinations in figure 2 (a) are quenched at 300

time steps and after a large number of disclinations

have been annihilated. This means that the disclinations

measured have relatively large distances between each

other, which makes it easy to measure the distortions

around the defects. Thus, the interaction of disclina-

tions should be relatively small at this stage. Even so,

large variations in apparent elastic anisotropy are

observed.

The measurements of simulated disclinations are

similar to experimental measurements described in [1].

Figures 2 (b) and 2 (c) give the measurement results of

the four z1/2 disclinations selected in figure 2 (a).

Again, the apparent value of ea has a near constant

value over a considerable radius range from the selected

disclination core. The w(h) data measured from them

show different distortions in figure 2 (b). The distortions

of the z1/2 disclinations vary from the predominant

splay to the predominant bend for disclinations A to D.

In fact, the w(h) data in figure 2 (b) are no longer as

Figure 1. (a) Theoretical configurations for a single z1/2
wedge disclination dependent on elastic anisotropy e
from equation (4) in [1], after Nehring and Saupe [10]. (a)
e~20.5; (b) e~20.3; (c) e~0; (d ) e~0.3; (e) e~0.5; ( f )
the distortion w(h) data measured from single disclina-
tions at radius r~6 (the number of the cells); (g) em(r)
results.
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symmetric as those obtained from single disclinations

in figure 1 ( f ) because of the interaction of neighbour-

ing disclinations. As a result, the values of ea fall in the

range of 21 to 1, as shown in figure 2 (c). Obviously,

the variation of the apparent elastic anisotropy is

similar to that measured from the observed disclina-

tions under the polarizing light microscope [1].

The assumption of equal elastic constants in fact

makes the system free of the effect of elastic anisotropy.

Therefore, only neighbouring disclinations could con-

tribute to the different distortions of the z1/2 discli-

nations. This may be the reason why there are great

variations in the apparent elastic anisotropy measured

in experiment and simulation. Thus the impact of dis-

clination interaction is not negligible. However, when

the elastic constants are unequal, i.e. the effect of elastic

anisotropy is turned on, how do the disclinations

respond? Is the disclination interaction weak enough to

be neglected, compared with the effect of strong elastic

anisotropy?

3.2.2. Splay–bend elastic anisotropy, k11|k33

Simulations with k11|k33 show that disclination

interaction still plays a significant role even though

the system has strong elastic anisotropy. Theoretically,

as the distinction between the splay and the bend

constants is increased, the impact of elastic anisotropy

on the structure of a z1/2 disclination emerges and

gradually dominates, just as shown in figure 1 for the

ideal single z1/2 disclinations. The tensor model is

used to generate disclinations on the condition of

unequal elastic constants in a polydomain system. The

Figure 2. (a) The disclinations quenched at 300 time steps performed on a 1006100 lattice with equal elastic constants (e~0) and
periodic boundary conditions. Small filled boxes represent the disclination cores. (b) The w(h) data at r~4 (the number of
cells); (c) the results of ea(r) measured from the four selected z1/2 disclinations A, B, C and D highlighted in (a).
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disclinations are also quenched after the density of

disclinations has substantially decreased.

Figures 3 and 4 show snapshots of the director field

and the z1/2 disclinations selected in the cases of

k11~10k33 and 10k11~k33, i.e. e<20.8 and e<0.8,

respectively. The obvious change of distortions around

z1/2 disclinations can easily be spotted. The same

method as before is used to measure the apparent

elastic anisotropies from the z1/2 disclinations in these

two cases with the strong elastic anisotropy. However,

the data show a significant distribution about the pre-

defined value of either e~20.8 or e~0.8. As a result,

the values of the apparent elastic anisotropy in both

cases are also in a range, as shown in figures 3 (b) and

4(b). It is unsurprising that the range shifts up, 3(b), or

down, 4(b), to a relatively narrow region, when the

splay constant is either much larger or much less than

the bend constant, respectively. It is clear however that

the interaction between neighbouring disclinations is

still active in the presence of strong elastic anisotropy.

The configuration of every disclination is a consequence

of the balanced effect of both disclination interaction

and intrinsic elastic anisotropy.

Despite the variation of ea, the mean of its distri-

bution range seems to indicate the condition of elastic

anisotropy of the system. The range 21(ea(1 may

imply that the intrinsic clastic anisotropy e is approxi-

mately zero, and 21(eav0 or 0vea(1 may mean

ev0 or ew0. Hence, comparing the results of ea mea-

sured above with the wide distribution of ea measured

Figure 3. (a) The disclinations quenched at 800 time steps
run on a 1006100 lattice with 10k11~k33 (e<20.8) and
periodic boundary conditions. Small filled boxes repre-
sent the disclination cores. (b) The results of ea(r)
measured from the four selected z1/2 disclinations A,
B, C and D highlighted in (a).

Figure 4. (a) The disclinations quenched at 800 time steps
run on a 1006100 lattice with k11~10k33 (e<0.8) and
periodic boundary conditions. Small filled boxes repre-
sent the disclination cores. (b) The results of ea(r)
measured from the four selected z1/2 disclinations A,
B, C and D highlighted in (a).
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from the disclinations observed by optical microscopy

(see [1]), Cl-6 copolyester is inferred to have approxi-

mately equal elastic constants. i.e. e <0 (the mean of ea
by experimental measurements is 20.08, see [1]).

4. Effect of disclination interaction

The dramatic variation of distortions around the

z1/2 disclinations in the same sample demonstrates the

complicated interaction between multiple neighbouring

disclinations. It is known that disclinations often group

in pairs of opposite signs. There is no easy way to

obtain a general analysis of the interaction if more than

one defect is present. In the following discussion, pairs

of (z1/2, 21/2) disclinations in a system with equal

elastic constants are studied in order to discriminate in

more detail between disclination interaction and elastic

anisotropy.

4.1. Patterns of disclination pairs

With equal elastic constants, an isolated (z1/2, 21/2)

disclination pair, z1/2 at (x1, y1) and 21/2 at (x2, y2)

can be described by employing the superposition

principle [10]:

w~
1

2
tan�1 y{y1

x{x1
z

1

2
tan�1 y{y2

x{x2
zc0 ð8Þ

where c0 determines the relative orientation between the

two disclinations.

Imagine that a 21/2 disclination could be taken

round a z1/2 disclination, as presented in figure 5. The

core of the z1/2 disclination is chosen as the origin and

its symmetric axis is fixed and parallel to the x axis. The

relative position of the 21/2 disclination is defined by a,
which is the angle between the central line of the pair

and the x axis. The five typical patterns of disclination

pairs are actually generated depending on c0 in equa-

tion (8), and there is a simple linear relationship

between a and c0, a~pz2c0. In the following discus-

sion, a is used as the angle descriptor to define the

angular position of the 21/2 disclination of the pair in

relation to the other.

4.2. Director fields around each of the defects of a

(z1/2, 21/2) pair

The energy analysis of all the pairs is performed on a

1006100 lattice by applying equation (2). The total

energy of the pair means that the elastic free energy is

contained in the region with a given radius R(48,

contributed by the splay and bend energies, as shown in

figure 6 (a). Similarly, the total energy of an individual

z1/2 or 21/2 disclination in the pair is the elastic free

energy in the region from the core to the radius r. Here,

the pair at a~0 is considered first, which is one of the

two extreme patterns described by Ranganath [2].

Figure 6 (b) shows the energy profile of this pair as a

function of the disclination separation d. The total

energy of the pair is logarithmically proportional to the

distance between the two defects, in good agreement

with the analytical expression [10]. So disclination pairs

attract each other and tend eventually to annihilate

each other in order to minimize the total elastic free

energy. Furthermore, the splay energy is higher than

the bend energy as shown in figure 6 (b). In the

assumption of equal elastic constants, this means that

the splay distortion plays a dominant role in this type

of pair, which supports Ranganath’s proposal [2].

Figure 6 (c) shows the proportion of the splay and

bend energies of the z1/2 disclination relative to its

own total energy, as a function of the radius r in the

pair at a~0 with the disclination separation d~10, 15

or 25. To allow comparison with a disclination free of a

neighbouring interaction, the splay and bend energies

for a single z1/2 disclination in the case of equal

constants, figure 1 (c), are also plotted in figure 6 (c). In

this case, the splay and bend energy are equal. In

figure 6 (c), the balance of the splay and bend energies

for the z1/2 disclinations is interrupted by the 21/2

disclination neighbour, through increasing the splay

distortions and decreasing the bend distortions. More-

over, the difference between the splay and bend energies

increases as the radius is increased at the interval (0,

d/2). When the radius is increased further, such as rw

d/2, the interaction becomes more complicated since

Figure 5. Five typical director patterns for (z1/2, 21/2)
disclination pairs in nematics. (a) and (e) are two extreme
configurations of pairs, with the centre region showing
either predominant splay or predominant bend. (b), (c)
and (d ) are the patterns between the extremes of (a) and
(e). ( f ) The core of the disclination of s1~z1/2 is the
origin, with its symmetric axis fixed along the x axis. The
relative orientation and position of the neighbouring
disclination s2~21/2 is defined by the angle a.
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Figure 6. (a) The disclination pair (z1/2, 21/2) at a~0. (b) The total, splay and bend energies of the pair as a function of the
disclination separation, d. (c) The proportion of the splay and bend energies of the z1/2 disclination relative to its own total
energy, as a function of the radius r from its core, the proportion being calculated for different separations d~10, 15 and 25.
(d ) The proportion of the splay and bend energies of the 21/2 disclination relative to its own total energy as a function of the
radius, the proportion being calculated for different separations d~10, 15 and 25.
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more distortions induced by the 21/2 disclination are

involved. When considering the distance between the

two defects, the energy curves seem to converge into the

narrow regions as the distance d is decreased. As a

result, the closer the two defects are, the larger is the

distinction between the splay and bend energies at a

given radius. This has been interpreted analytically as

an interaction force which is inversely proportional to

the separation [10]. Due to the relative scale of the

lattice, increasing the distance of the pair can be viewed

as increasing the resolution of the director field sur-

rounding the defect cores of fixed separation. figure 6 (c)

shows that the difference between the splay and bend

energies for a z1/2 disclination induced by a neigh-

bouring 21/2 disclination cannot be ignored, in spite of

large separation or high resolution. However, the

diagrams indicate that the value of ea(r) will turn to

the intrinsic anisotropy for measurements made closer

to the core than 10% of the separation of the pair.

Figure 6 (d ) shows the proportion of the splay and

bend energies of the 21/2 disclination relative to its

own total energy, as a function of the radius r in the

pair at a~0 with the disclination separation d~10, 15

or 25. Clearly, the z1/2 and 21/2 disclinations show

very different energy profiles. For the 21/2 disclina-

tions in figure 6 (d ), the splay and bend energies are

almost equal in the region of rvd/2. The difference

between the splay and bend energies grows gradually if

rwd/2 and more distortions induced by the neighbour-

ing z1/2 disclination are involved. Similar energy

profiles are shown with the different separations.

Therefore, the splay and bend distortions for the

21/2 disclination are insensitive to its z1/2 disclination

neighbour. Of course, the anisotropy of the director

field around a 21/2 disclination is insensitive to the

intrinsic anisotropy either [2]. It is the z1/2 disclination

that contributes most to the distinction between the

splay and the bend energies of the pairs.

4.3. Interaction and patterns of disclination pairs

With a~p, the disclination pair in figure 5 (e) shows

another extreme pattern, with the dominant bend

distortions in the intervening field between the two

disclinations, also as described by Ranganath [2]. The

energy profiles for this pattern are exactly the same as

those in figure 6 if the data for the splay and bend

energies are exchanged. For the other patterns of

disclination pairs at 0vavp, the difference between the

splay and bend energies changes continuously with a.
Figure 7 shows how the distribution of the splay and

bend energies varies with the relative orientation of the

two disclinations with the separation d~25. The total

energy and the energies attributable to the splay and

bend distortions of the pairs are shown as a function of

a in figure 7 (a). It is interesting that the total energy of

all types of pairs is fairly constant. Therefore, there is

no energy involved when taking a 21/2 disclination

round a z1/2 disclination, i.e. the probability for any

given disclination pair is equal in the condition of equal

Figure 7. (a) The total, splay and bend energies of (z1/2,
21/2) pairs versus the relative orientation a of the 21/2
disclination. (b) The variation of the total, splay and
bend energies of the z1/2 disclination of the pair with a.
(c) The total, splay and bend energies of the 21/2
disclination of the pair as a function of a.
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constants. Furthermore, the splay energy of the pairs

decreases while the bend energy increases as a changes

from 0 to p. The difference between the splay and bend

distortions reaches a maximum at a~0 or p.
Figures 7 (b) and 7(c) show the total energy and the

energies attributable to the splay and the bend distor-

tions of the z1/2 and 21/2 disclinations in the pairs as

a function of their relative orientation. The energy

curves for z1/2 disclination in figure 7 (b) have similar

profiles to those for the whole pairs in figure 7 (a).

However, for the 21/2 disclination, the proportion of

the splay and bend energies is almost equal, as shown in

figure 7 (c). All these energy profiles may demonstrate

why there are the great variations of apparent elastic

anisotropy in the polydomain systems in the case of

equal elastic constants.

4.4. Discussion

It is clear that the splay and bend distortions around

z1/2 disclinations are sensitive to disclination interac-

tion. By contrast, the splay and bend distortions of 21/2

disclinations are remarkably insensitive to neighbour-

ing interaction. These results seem reminiscent of the

relationship between the z1/2 and 21/2 disclination

structures and elastic anisotropy. However, the puzzle

is how the 21/2 disclination can remain unchangeable

in the presence of a disclination interaction. Interest-

ingly, a close examination of the 21/2 disclinations

shows that the threefold structure for the 21/2 discli-

nation is no longer fully symmetrical in some types of

pairs. For instance in figure 5 (e), for the 21/2 discli-

nation in the pair at a~p, one angle between its two

symmetric axes is narrowed from 2p/3 to around p/2 so

that more bend and fewer splay distortions associated

with the neighbouring z1/2 disclination emerge in this

region. Consequently, the other two neighbouring

angles become wider and spread to 3p/4 respectively,

and hence more splay and less bend distortions are

created. More cases can be found in figures 5 (a) and

5(b). By adjusting the three angles between its

symmetric axes, the 21/2 disclination keeps the splay

and the bend elastic energies almost unchanged. In

fact, the symmetry of the z1/2 disclinations is

also challenged, except for the two extreme patterns

of pairs with a~0 and p. In many cases, the z1/2

disclinations still maintain their symmetry, but the

symmetry is not perfect, as shown the distortion data

w(h) in figure 2 (b).

4.5. Further experimental observation

There are convincing experimental observations

revealing the deformed structure of the disclinations.

Part I [1] presented a few z1/2 disclinations in a full

range of configurations, from ‘sunrise’ to ‘archway’.

Figure 8 (a) shows the deformed structure of a 21/2

disclination revealed by spontaneous band texture in

the semi-rigid Cl-6 copolymer under a polarizing light

microscope. It can be seen that, for the 21/2 discli-

nation, the three angles between its symmetric axes are

unequal. Figure 8 (b) shows similar deformed structures

of a 21/2 disclination revealed by lamellar structure in

the rigid BN(1:1) copolymer [11] under a scanning

electron microscope (SEM). The morphology of the

21/2 disclinations at a higher resolution indicates

that the change of the structure starts near the core.

Unfortunately, as mentioned before, exploring the

structure closer the core is beyond the optical method

where the disclinations of the array are less than a few

10s of microns apart.

The real situation is more complex because one

defect always has more than one neighbour. Typically,

Figure 8. (a) Optical micrograph of a 21/2 disclination
revealed by spontaneous band texture in the nematic
phase of the semi-rigid Cl-6 copolyester. (b) SEM
micrograph of a 21/2 disclination decorated by lamellar
structure in the nematic phase of the random rigid
BN(1:1) copolyester.

Figure 9. A group of disclinations revealed by spontaneous
band texture in the nematic phase of Cl-6 copolyester.
Two neighbouring z1/2 disclinations show considerably
different distortions.
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there are 2y6 surrounding disclinations. Figure 9 gives

an example of a cluster of disclinations as revealed by

band texture. There are more than two disclinations

surrounding each disclination, including both 21/2 and

z1/2 disclinations. The structure of an individual

disclination is the result of a competition between

attractive and repulsive forces with multi-neighbours.

Therefore, disclinations with various configurations

emerge simultaneously, such as the z1/2 disclination

A and B in figure 9 showing two distinct configura-

tions. Furthermore, during the evolution of the texture,

the disclination interaction varies with the disclination

density. It is conceivable that the structures of z1/2

and 21/2 disclinations would continuously change

during the whole evolution of the texture.

5. Conclusions with summary

The combination of the experimental measurements

with the numerical simulation demonstrates that the

structures of disclinations are the result of competition

between disclination interaction and elastic anisotropy

during the texture evolution. The conclusions may be

summarized thus:

(1) The measurements of the distortion field around

selected z1/2 disclinations by an optical

method show a distortion, expressed in term

of ea, which is constant over a significant radius

range, r/d from 0.05 to 0.5 (d the disclination

seperation). This radius range is accessible by

the optical (band texture decoration) technique

used.

(2) The measured values of ea vary widely for

different z1/2 disclinations selected. This wide

variation has been shown to be the result of

interaction with neighbouring disclinations.

(3) Simulation by the tensorial lattice model con-

firms that the wide variations of ea is due to the

influence of neighbouring disclinations, but that

the range will be distributed about a value of e,
characteristic of the intrinsic anisotropy of the

liquid crystal.

(4) The measurement of elastic anisotropy obtained

on the basis of the continuum theory by measur-

ing the distortion of any single wedge disclina-

tion should only be used if the disclination is

isolated. Practically, the measurement of the

intrinsic anisotropy will require that the distance

of the disclination to the nearest neighbours is

larger than the distance from its core at which

the anisotropy is measured (at r/dv0.05) or

averages of the apparent anisotropies from a

wide range of z1/2 disclinations, or, ideally, a

combination of both.

(5) It would appear that the value of intrinsic

anisotropy of the main chain polymer examined,

Cl-6, which has flexible spacers (CH2)6 in its

backbone is close to zero. This result suggests

the role of hairpin in compensating for density

gradients under splay distortion.

(6) The simulation results suggest that disclination

interaction has a considerable effect on the

structures of both z1/2 and 21/2 wedge

disclinations. The distortion of a z1/2 disclina-

tion depends not only on elastic anisotropy, but

also on the disclination interaction. The splay

and bend distortions around the z1/2 disclina-

tion vary with the relative orientation of its

neighbouring 21/2 disclination. A 21/2 discli-

nation adapts itself in polydomains by changing

the angles between its three symmetric axes. The

elastic free energies attributable to the splay and

bend distortions around the 21/2 disclination

remain almost constant and are sensitive

to neither the elastic anisotropy nor the

neighbouring disclinations.
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